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Abstract
The conventional single-target Cross-Domain Rec-
ommendation (CDR) only improves the recom-
mendation accuracy on a target domain with the
help of a source domain (with relatively richer in-
formation). In contrast, the novel dual-target CDR
has been proposed to improve the recommendation
accuracies on both domains simultaneously. How-
ever, dual-target CDR faces two new challenges:
(1) how to generate more representative user and
item embeddings, and (2) how to effectively op-
timize the user/item embeddings on each domain.
To address these challenges, in this paper, we pro-
pose a graphical and attentional framework, called
GA-DTCDR. In GA-DTCDR, we first construct t-
wo separate heterogeneous graphs based on the rat-
ing and content information from two domains to
generate more representative user and item embed-
dings. Then, we propose an element-wise atten-
tion mechanism to effectively combine the embed-
dings of common users learned from both domains.
Both steps significantly enhance the quality of us-
er and item embeddings and thus improve the rec-
ommendation accuracy on each domain. Extensive
experiments conducted on four real-world datasets
demonstrate that GA-DTCDR significantly outper-
forms the state-of-the-art approaches.

1 Introduction
Targeting data sparsity problem, Cross-Domain Recommen-
dation (CDR) [Berkovsky et al., 2007] aims to leverage the
richer information from a richer domain to only help improve
the recommendation accuracy on a sparser domain, resulting
in single-target CDR. In contrast, the novel dual-target CDR
has been recently proposed to improve the recommendation
accuracies on both richer and sparser domains simultaneous-
ly by making good use of the information or knowledge from
both domains [Zhu et al., 2019; Li and Tuzhilin, 2019].

Intuitively, based on the existing single-target CDR ap-
proaches, it seems to be a solution for dual-target C-
DR by simply changing their transfer direction from
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“Richer→Sparser” to “Sparser→Richer”. However, as re-
ferred to as Negative Transfer [Pan and Yang, 2009], this idea
does not work, because, in principle, the knowledge learned
from the sparser domain is less accurate than that learned
from the richer domain, and thus the recommendation accu-
racy on the richer domain is more likely to decline by simply
and directly changing the transfer direction. Therefore, dual-
target CDR demands novel and effective solutions.

To achieve good-performing dual-target CDR, there are t-
wo significant challenges in the literature as follows.

CH1. how to leverage the data richness and diversity to
generate more representative single-domain user and item
embeddings for improving recommendation accuracy on each
of both domains? Both traditional Collaborative Filtering
(CF) models, e.g., BPR [Rendle et al., 2009], and novel neu-
ral CF models, e.g., NeuMF [He et al., 2017] and DMF [Xue
et al., 2017], are based on the user-item relationship to learn
user and item embeddings. However, most of them ignore
the user-user and item-item relationships, and thus can hardly
enhance the quality of embeddings.

CH2. how to effectively optimize the user or item embed-
dings on each target domain for improving recommendation
accuracies on both domains? The state-of-the-art dual-target
CDR approaches either adopt fixed combination strategies,
e.g., average-pooling, max-pooling, and concatenation [Zhu
et al., 2019], or simply adapt the existing single-target trans-
fer learning to dual transfer learning [Li and Tuzhilin, 2019].
However, none of them can effectively combine the embed-
dings of common users/items, and thus it is hard to achieve
an effective embedding optimization on each target domain.

Our Approach and Contributions. For the above two
challenges, in this paper, we propose a novel graphical and
attentional approach for dual-target CDR. The characteristics
and contributions of our work are summarized as follows:

- We propose a Graphical and Attentional framework for
Dual-Target Cross-Domain Recommendation, called GA-
DTCDR, which can leverage the data richness and diversi-
ty (e.g., ratings, reviews, and tags) of dual domains, share
the knowledge of common users across domains, and make
recommendations on both domains;

- To address CH1, we construct a heterogeneous graph, con-
sidering not only user-item relationships (based on ratings),
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but also user-user and item-item relationships (based on
content similarities). Then, with this heterogeneous graph,
we apply a graph embedding technique, i.e., Node2vec, to
generate more representative single-domain user and item
embeddings for accurately capturing user and item fea-
tures;

- To address CH2, we propose an element-wise attention
mechanism to effectively combine the embeddings of com-
mon users learned from both domains. This mechanism
trains two separate element-wise attention networks for the
two target domains respectively, which can significantly
enhance the quality of user embeddings and thus improve
the recommendation accuracy on each of two domains si-
multaneously;

- We conduct extensive experiments on four real-world
datasets, which demonstrate that our GA-DTCDR signifi-
cantly outperforms the best-performing baselines by an av-
erage of 8.46% in terms of recommendation accuracy.

2 Related Work
2.1 Single-Target and Dual-Target CDR
Single-Target CDR. According to transfer strategies, the
existing single-target CDR approaches can be generally clas-
sified in two categories, i.e., content-based transfer and
feature-based transfer. Content-based Transfer approaches
first link the richer and sparser domains by content infor-
mation, such as attributes [Berkovsky et al., 2007] and tex-
t [Tan et al., 2014], then share user/item knowledge across
domains. Feature-based Transfer approaches tend to apply
some classical machine learning techniques, e.g., multi-task
learning [Lu et al., 2018], transfer learning [Hu et al., 2019],
and neural networks [Man et al., 2017; Zhu et al., 2018;
Fu et al., 2019], to directly share or indirectly map us-
er/item embeddings or rating patterns [Yuan et al., 2019]
across domains. Also, some studies [Pan and Yang, 2013;
Zhang et al., 2016] focus on a derivational problem, i.e.,
multi-domain recommendation, which is to improve the rec-
ommendation accuracy on the target domain by leveraging
the auxiliary information from multiple domains. However,
all of them are single-target models, which means they can-
not improve the recommendation accuracy on the richer do-
main even if the sparser domain may contain certain types of
auxiliary information to support the richer domain.
Dual-Target CDR. The existing dual-target CDR ap-
proaches mainly focus on applying fixed combination strate-
gies, e.g., average-pooling, max-pooling, and concatenation
[Zhu et al., 2019], or simply improving the existing single-
target transfer learning to be a dual transfer learning [Li and
Tuzhilin, 2019]. However, none of them can effectively com-
bine the embeddings of common users.

2.2 Graph Embedding
Graph Embedding is to learn a mapping function which map-
s the nodes in a graph to low-dimensional latent represen-
tations [Zhou et al., 2018; Liu et al., 2019]. According to
embedding techniques, we review the existing graph embed-
ding approaches into two categories, i.e., dimensionality re-
duction and neural network. Dimensionality reduction-based

Symbol Definition

cij ∈ C
the comment (e.g., the review and the tags) of

user ui on item vj

C ∈ Rm×n the user comments
D = {d1, d2, ..., dm+n} the content documents of users and items
ID = {id1, ..., idn} the item details

G = ({U ,V}, E)
the heterogeneous graph, E is the set of

user-user, user-item, and item-item relationships
k the dimension of embedding matrix
m the number of users
n the number of items
Ũ the combined embeddings of common users

rij ∈ R the rating of user ui on item vj

R ∈ Rm×n the rating matrix
U = {u1, ..., um} the set of users

U the graph embedding matrix of users
UC the document embedding matrix of users

UP = {up1, ..., upm} the user profiles
V = {v1, ..., vn} the set of items

V the graph embedding matrix of items
V C the document embedding matrix of items

yij ∈ Y the interaction of user ui on item vj

Y ∈ Rm×n the user-item interaction matrix

∗a and ∗b the notations for domains a and b, e.g., ma

represents the number of users on domain a

∗̂ the predicted notations, e.g., ŷij represents the
predicted interaction of ui on item vj

Table 1: Important notations

approaches [Wold et al., 1987] optimize a function that re-
duces the dimension of a graph matrix and then produce low-
dimensional embeddings. Neural network-based approach-
es, e.g., Node2vec [Grover and Leskovec, 2016], treat nodes
as words and the generated random walks on graphs as sen-
tences, and then learn node embeddings based on these words
and sentences.

2.3 Attention Mechanism
Attention is firstly introduced in [Bahdanau et al., 2014],
which provides more accurate alignment for each position in
a machine translation task. Apart from machine translation,
recently, attention mechanism also has been widely used in
recommendation [Chen et al., 2017]. The general idea of at-
tention mechanism is to focus on selective parts of the w-
hole information, which can capture the outstanding features
of objects. For recommendation, the existing attention ap-
proaches [Wang et al., 2019] tend to select more informative
parts of explicit or implicit data to improve the representa-
tions for users and items.

3 The Proposed Model
In this section, we first formalize the dual-target cross-domain
recommendation problem. Then, we propose a novel Graphi-
cal and Attentional framework for Dual-Target Cross-Domain
Recommendation, called GA-DTCDR. Finally, we present
the detailed components of GA-DTCDR.

3.1 Problem Statement
First, for readability purposes, we list the important notations
of this paper in Table 1. Then, we define the Dual-Target
Cross-Domain Recommendation as follows.
Dual-Target Cross-Domain Recommendation (DTCDR).
Given two related domains a and b including explicit feed-
back (e.g., ratings and comments), implicit feedback (e.g.,
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Figure 1: The overview of GA-DTCDR

purchase and browsing histories), and side information (e.g.,
user profiles and item details), the DTCDR is to improve the
recommendation accuracies on both domains simultaneously
by leveraging their observed information.

Note that a certain degree of overlap between the users
of domains a and b, i.e., common users, plays a key role in
bridging the two domains and exchanging knowledge across
domains. This is a common idea in the existing single-target
and dual-target CDR approaches.

3.2 Overview of GA-DTCDR

Targeting the dual-target CDR problem, we propose a nov-
el graphical and attentional framework, called GA-DTCDR.
As shown in Fig. 1, this framework is divided into five main
components, i.e., Input Layer, Graph Embedding Layer, Fea-
ture Combination Layer, Neural Network Layers, and Output
Layer. We will present the details of each component below.

Input Layer. First, for the input of our GA-DTCDR, we
consider both explicit feedback (ratings and comments) and
side information (user profiles and item details). These input
data can be generally classified into two categories, i.e., rating
information and content information.

Graph Embedding Layer. Then, we leverage the rating
and content information of domains a and b to construct a het-
erogeneous graph representing user-item interaction relation-
ships, user-user similarity relationships, and item-item simi-
larity relationships. Based on the graph, we apply the Graph
Embedding model, Node2vec [Grover and Leskovec, 2016],
to generate user and item embedding matrices.

Feature Combination Layer. Next, we propose an
element-wise attention mechanism to combine the common
users’ embeddings for domains a and b. This layer intelli-
gently gives a set of weights to the two embeddings of a com-
mon user learned from both domains and generates a com-
bined embedding for the common user, which remains his/her
features learned from domains a and b with different propor-
tions.

Neural Network Layers. In this component, we apply a
fully-connected neural network, i.e., Multi-Layer Perceptrons
(MLP), to represent a non-linear relationship between users
and items on each domain.

Output Layer. Finally, we can generate final user-item in-
teraction predictions. The training of our model is mainly
based on the loss between predicted user-item interactions
and observed user-item interactions.

In fact, like the single-target or dual-target CDR approach-
es in [Zhao et al., 2017; Zhu et al., 2018; Zhu et al., 2019],
our GA-DTCDR framework can be applied to Cross-System
Recommendation (CSR) as well, where the two systems have
the same domain but different users, and thus contain com-
mon items only, such as DoubanMovie and MovieLens (see
Task 3 in Experiments and Analysis). Accordingly, in Fig.
1, we only need to replace common users with common items
for supporting dual-target CSR.

3.3 Graph Embedding Layer
The existing embedding strategies for recommender systems
mainly focus on representing the user-item interaction rela-
tionship. Apart from the user-item interaction relationship,
we use a graph to represent user-user and item-item relation-
ships as well. Therefore, based on the rating and content in-
formation observed from domains a and b, we construct t-
wo heterogeneous graphs, including nodes (users and item-
s) and weighted edges (ratings and content similarities), for
domains a and b, respectively. Then, we can generate more
representative user and item embedding matrices. The Graph
Embedding contains three main components, i.e., Document
Embedding, Graph Construction, and Output.

Document Embedding. To construct the heterogeneous
graph, we need to compute the content similarities between
two users or two items. To this end, we consider multi-source
content information, e.g., reviews, tags, user profiles, item
details, observed from domains a and b, to generate user and
item content embedding matrices. In this paper, we adopt
the most widely used model, i.e., Doc2vec [Le and Mikolov,
2014], as the document embedding technique. The detailed
document embedding process works as follows: (1) First, in
the training set, for a user ui, we collect the comments (re-
views and tags) Ci∗ and the user profile upi of ui into the
same document di, while for an item vj , we collect the com-
ments (reviews and tags) C∗j on the item and its item de-
tail idj into the same document dm+j ; (2) Next, we segment
the words in the documents D = {d1, d2, ..., dm+n} by us-
ing the most widely used natural language tool, i.e., Stan-
fordCoreNLP [Manning et al., 2014]; (3) Finally, we apply
Doc2vec model to map the documents D into the text vectors
UC and V C for users and items, respectively.

Graph Construction. First, we link the users and items via
their interaction relationships. The weights of these interac-
tion edges are normalized ratings, i.e., R/max(R). To con-
sider the user-user and item-item relationships in the hetero-
geneous graph, we generate the synthetic edges between two
users or two items according to their normalized content sim-
ilarities (edge weights). The generation probability P (i, l) of
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the edge between users ui and ul is as follows:

P (i, l) = α · sim(UCi, UCl), (1)

where α is a hyper-parameter which controls the sampling
probability and sim(UCi, UCl) is the normalized cosine
similarity between UCi and UCl. Similarly, we can obtain
the generation probability between two items. Based on the
user-item interaction relationships, user-user similarity rela-
tionships, and item-item similarity relationships, we can con-
struct the heterogeneous graphsGa andGb for domains a and
b, respectively.

Output. Based on the two heterogeneous graphs Ga and
Gb, we employ the graph embedding model, i.e., Node2vec
[Grover and Leskovec, 2016], to generate user embedding
matrix U and item embedding matrix V .

3.4 Feature Combination Layer
In this layer, we combine the embeddings of common user-
s learned from domains a and b by an element-wise atten-
tion mechanism. By this way, the combined embeddings
of common users Ũ for each domain can remain both fea-
tures learned from the two domains in different proportions.
The traditional attention mechanism tends to select a certain
part of representative features, and gives these features higher
weights when generating the combined features [Bahdanau et
al., 2014]. Similarly, for a common user ui, our element-wise
attention mechanism tends to pay more attention to the more
informative elements from each pair of elements in Ua

i and
U b
i . Thus our element-wise attention mechanism can generate

two more representative embeddings Ũa
i and Ũ b

i of the com-
mon user ui for domains a and b, respectively. The structure
of element-wise attention is shown in Feature Combination
Layer of Fig. 1. The combined embedding Ũa

i of a common
user ui for domain a can be represented as:

Ũa
i =W a � Ua

i + (1−W a)� U b
i , (2)

where � is the element-wise multiplication and W a ∈
Rma×k is the weight matrix for the attention network on do-
main a. Similarly, we can obtain the combined embedding
Ũ b
i of ui for domain b.
Note that for the distinct users and all the items on domains

a and b, we just reserve their embeddings without using the
attention mechanism because they do not have dual embed-
dings on both domains a and b.

3.5 Training for Neural Network Layers and
Output Layer

First of all, we train our model with the following objective
function on domain a:

min
Pa,Qa,Θa

∑
y∈Y a+∪Y a−

`(y, ŷ) + λ(‖P a‖2F + ‖Qa‖2F ), (3)

where `(y, ŷ) is a loss function between an observed inter-
action y and its corresponding predicted interaction ŷ (see
Eq. (5)), Y a+ and Y a− denote all the observed and the
unobserved user-item interactions on domain a respective-
ly, ‖P a‖2F + ‖Qa‖2F is the regularizer (see Eq. (6)) and λ

Datasets Douban MovieLens
Domains Book Music Movie Movie
#Users 2,110 1,672 2,712 10,000
#Items 6,777 5,567 34,893 9,395

#Interactions 96,041 69,709 1,278,401 1,462,905
Density 0.67% 0.75% 1.35% 1.56%

Tasks Sparser Richer Overlap

CDR Task 1 DoubanBook DoubanMovie #Common Users = 2,106
Task 2 DoubanMusic DoubanMovie #Common Users = 1,666

CSR Task 3 DoubanMovie MovieLens #Common Items = 4,115

Table 2: Experimental datasets and tasks

is a hyper-parameter which controls the importance of the
regularizer. To avoid our model over-fitted to Y + (positive
instances), we randomly select a certain number of unob-
served user-item interactions as negative instances, denoted
by Y −sampled, to replace Y −. This training strategy has been
widely used in the existing approaches [He et al., 2017].

Based on rating information, the user-item interaction yij
between a user ui and an item vi can be represented as:

yij =


rij , if yij ∈ Y +;

0, if yij ∈ Y −sampled;

null, otherwise.

(4)

We choose a normalized cross-entropy loss which can be
represented as:

`(y, ŷ) =
y

max(R)
log ŷ + (1− y

max(R)
) log(1− ŷ), (5)

where max(R) is the maximum rating on a domain.
As shown in Neural Network Layers of Fig. 1, our GA-

DTCDR employs a neural network, i.e., MLP, to represent a
non-linear relationship between users and items. The input
embedding matrices of users and items on domain a for the
MLP are P a

in = [Ũa;Uad] andQa
in = V a respectively, where

Ũa is the combined embedding matrix of common users for
domain a, and Uad is the embedding matrix of distinct users
on domain a. Therefore the embedding of user ui and item
embedding of item vj in the output layer of the MLP can be
represented as:

P a
i = P a

outi = f(...f(f(P a
ini
·W a

P1
) ·W a

P2
)),

Qa
j = Qa

outj = f(...f(f(Qa
inj
·W a

Q1
) ·W a

Q2
)),

(6)

where the activation function f(∗) is ReLU, W a
P1
,W a

P2
... and

W a
Q1
,W a

Q2
... are the weights of multi-layer networks in dif-

ferent layers on domain a for P a
ini

and Qa
inj

, respectively.
Finally, in Output Layer of Fig. 1, the predicted interaction

ŷij between ui and vj on domain a is as follows:

ŷaij = cosine(P a
i , Q

a
j ) =

P a
i ·Qa

j

‖P a
i ‖‖Qa

j ‖
. (7)

Similarly, we can obtain the predicted interaction ŷbij on do-
main b.

4 Experiments and Analysis
We conduct extensive experiments on four real-world dataset-
s to answer the following key questions: Q1: How does
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Model Training Data Encoding Embedding Transfer Strategy

Baselines

Single-Domain
Recommendation (SDR)

NeuMF [He et al., 2017] Rating One-hot Non-linear MLP -
DMF [Xue et al., 2017] Rating Rating Vector Non-linear MLP -

Single-Target
Cross-Domain

Recommendation
(CDR)

CTR-RBF [Xin et al., 2015] Rating & Content Topic Modeling Linear MF Mapping &
Transfer Learning

BPR DCDCSR [Zhu et al., 2018] Rating Random Initialization Linear MF Combination & MLP

TMH [Hu et al., 2019] Rating & Content One-hot Non-linear MLP Mapping & Transfer
Learning & Attention

Dual-Target CDR
DMF DTCDR Concat

[Zhu et al., 2019] Rating & Content Rating Vector Non-linear MLP Multi-task Learning
& Concatenation

DDTCDR [Li and Tuzhilin, 2019] Rating One-hot & Multi-hot Non-linear MLP Dual Transfer Learning

Our
Methods Dual-Target CDR

GA-DTCDR Average (a variant
of GA-DTCDR for ablation study) Rating & Content Heterogeneous Graph Graph Embedding Combination

(Average-Pooling)

GA-DTCDR Rating & Content Heterogeneous Graph Graph Embedding Combination
(Element-wise Attention)

Table 3: The comparison of the baselines and our methods

Task Domain
SDR Baselines Single-Target CDR Baselines

NeuMF DMF CTR-RBF BPR DCDCSR TMH
HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG

Task1
(k = 8)

DoubanBook (Sparser) .3810 .2151 .3841 .2265 .3830 .2217 .3954 .2419 .4199 .2583*
DoubanMovie (Richer) .5266 .2911 .5498 .3114 - - - - - -

Task 1
(k = 16)

DoubanBook (Sparser) .3833 .2181 .3854 .2356 .3870 .2256 .4014 .2413 .4331 .2522*
DoubanMovie (Richer) .5282 .2939 .5573 .3141 - - - - - -

Task 1
(k = 32)

DoubanBook (Sparser) .3899 .2182 .3871 .2340 .3956 .2264 .4079 .2436 .4468* .2647*
DoubanMovie (Richer) .5411 .2991 .5612 .3254 - - - - - -

Task 1
(k = 64)

DoubanBook (Sparser) .3908 .2226 .3917 .2362 .4017 .2314 .4107 .2454 .4504* .2768*
DoubanMovie (Richer) .5449 .3152 .5632 .3387 - - - - - -

Task 1
(k = 128)

DoubanBook (Sparser) .4012 .2310 .4046 .2451 .4171 .2532 .4111 .2431 .4523* .2814*
DoubanMovie (Richer) .5512 .3301 .5776 .3505 - - - - - -

Task Domain
Dual-Target CDR Baselines Dual-Target CDR (our) Improvement

(GA-DTCDR vs.
best baselines)

DMF DTCDR
Concat DDTCDR GA-DTCDR

Average GA-DTCDR

HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG

Task1
(k = 8)

DoubanBook (Sparser) .4412* .2571 .4033 .2257 .4057 .2513 .4479 .2759 1.52% 6.81%
DoubanMovie (Richer) .6032* .3732* .5612 .3185 .5968 .3546 .6518 .4025 8.06% 7.85%

Task 1
(k = 16)

DoubanBook (Sparser) .4408* .2513 .4054 .2292 .4190 .2577 .4706 .2900 6.76% 14.99%
DoubanMovie (Richer) .6080* .3721* .5750 .3595 .6013 .3596 .6566 .4014 10.80% 7.87%

Task 1
(k = 32)

DoubanBook (Sparser) .4318 .2461 .4180 .2344 .4346 .2610 .4758 .2896 6.50% 9.41%
DoubanMovie (Richer) .6011* .3718* .5739 .3386 .6374 .3896 .6747 .4187 12.24% 12.61%

Task 1
(k = 64)

DoubanBook (Sparser) .4265 .2452 .4258 .2430 .4423 .2671 .4882 .3026 8.40% 9.32%
DoubanMovie (Richer) .5998* .3649* .5825 .3553 .6416 .3941 .6817 .4205 13.65% 15.23%

Task 1
(k = 128)

DoubanBook (Sparser) .4317 .2510 .4225 .2439 .4490 .2691 .4995 .3098 10.44% 10.09%
DoubanMovie (Richer) .5991* .3680* .5863 .3589 .6449 .3981 .6957 .4406 16.12% 19.73%

Table 4: The experimental results (HR@10 & NDCG@10) for Tasks 1 (the best-performing baselines with results marked by *)

our model outperform the state-of-the-art models (see Result
1)? Q2: How does the element-wise attention mechanism
contribute to performance improvement (see Result 2)? Q3:
How does the dimension k of embeddings affect the perfor-
mance of our model (see Result 3)? Q4: How does our model
perform on Top-N recommended lists (see Result 4)?

4.1 Experimental Settings
Experimental Datasets and Tasks. To validate the recom-
mendation performance of our GA-DTCDR approach and
baseline approaches, we choose four real-world datasets (see
Table 2), i.e., three Douban subsets (DoubanBook, Douban-
Music, and DoubanMovie) [Zhu et al., 2019], and MovieLens
20M [Harper and Konstan, 2016]. For the three Douban sub-
sets, we retain the users and items with at least 5 interactions,
while for MovieLens 20M, we extract a MovieLens subset
containing 10, 000 users with at least 5 interactions as well.
This filtering strategy has been widely used in the existing
approaches [Yuan et al., 2019; Zhu et al., 2019]. The three
Douban subsets contain ratings, reviews, tags, user profiles,
and item details while MovieLens contains ratings, tags, and

item details. Based on these four datasets, we design 2 CDR
tasks and 1 CSR task (see Table 2) to validate the recommen-
dation performance in CDR and CSR scenarios, respectively.

Parameter Setting. For fair comparison, we optimize the
parameters of our GA-DTCDR and those of the baselines.
For Graph Embedding Layer in Fig. 1, we set the hyper-
parameters of Doc2vec and Node2vec models as suggested
in [Le and Mikolov, 2014; Grover and Leskovec, 2016], and
the sampling probability α as 0.05. In Neural Network Lay-
ers of Fig. 1, the structure of the layers is “k → 2k → 4k →
8k → 4k → 2k → k”, the parameters of the neural network
are initialized as the Gaussian distribution X ∼ N (0, 0.01).
For training our GA-DTCDR, we randomly select 7 negative
instances for each observed positive instance into Y −sampled,
adopt Adam [Kingma and Ba, 2014] to train the neural net-
work, and set the maximum number of training epochs to 50.
The learning rate is 0.001, the regularization coefficient λ is
0.001, and the batch size is 1, 024. To answer Q3, the dimen-
sion k of the embedding varies in {8, 16, 32, 64, 128}.
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Task Domain
SDR Baselines Single-Target CDR Baselines

NeuMF DMF CTR-RBF BPR DCDCSR TMH
HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG

Task 2
(k = 8)

DoubanMusic (Sparser) .3135 .1703 .3127 .1812 .3227 .1895 .3259 .1894 .3579 .2034
DoubanMovie (Richer) .5266 .2911 .5498 .3114 - - - - - -

Task 2
(k = 16)

DoubanMusic (Sparser) .3190 .1731 .3170 .1891 .3121 .1761 .3261 .1901 .3612 .2137
DoubanMovie (Richer) .5282 .2939 .5573 .3141 - - - - - -

Task 2
(k = 32)

DoubanMusic (Sparser) .3198 .1771 .3218 .1912 .3141 .1844 .3271 .1931 .3701* .2202*
DoubanMovie (Richer) .5411 .2991 .5612 .3254 - - - - - -

Task 2
(k = 64)

DoubanMusic (Sparser) .3242 .1791 .3267 .1926 .3324 .1916 .3304 .2001 .3882* .2323*
DoubanMovie (Richer) .5449 .3152 .5632 .3387 - - - - - -

Task 2
(k = 128)

DoubanMusic (Sparser) .3314 .1810 .3301 .1971 .3412 .1954 .3452 .2074 .3946* .2430*
DoubanMovie (Richer) .5512 .3301 .5776 .3505 - - - - - -

Task Domain
Dual-Target CDR Baselines Dual-Target CDR (our) Improvement

(GA-DTCDR vs.
best baselines)

DMF DTCDR
Concat DDTCDR GA-DTCDR

Average GA-DTCDR

HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG
Task 2

(k = 8)
DoubanMusic (Sparser) .3614* .2117* .3302 .1930 .3690 .2109 .3852 .2166 6.59% 2.31%
DoubanMovie (Richer) .5873* .3867* .5655 .3629 .5987 .3731 .6470 .3983 10.17% 3.00%

Task 2
(k = 16)

DoubanMusic (Sparser) .3663* .2213* .3451 .2092 .3706 .2037 .3947 .2256 7.75% 1.94%
DoubanMovie (Richer) .5887* .3863* .5704 .3676 .6058 .3716 .6426 .3950 9.16% 2.25%

Task 2
(k = 32)

DoubanMusic (Sparser) .3607 .2201 .3463 .2050 .3789 .2056 .4133 .2318 14.58% 5.32%
DoubanMovie (Richer) .5770* .3758* .5739 .3726 .6145 .3754 .6677 .4141 15.72% 10.19%

Task 2
(k = 64)

DoubanMusic (Sparser) .3571 .2109 .3466 .2045 .3812 .2144 .4384 .2489 12.93% 7.15%
DoubanMovie (Richer) .5787* .3705* .5719 .3621 .6120 .3681 .6817 .4284 17.80% 15.63%

Task 2
(k = 128)

DoubanMusic (Sparser) .3580 .2132 .3520 .2117 .3996 .2207 .4491 .2604 13.81% 7.16%
DoubanMovie (Richer) .5792* .3742 .5748 .3762* .6311 .3859 .7068 .4526 22.03% 20.31%

Table 5: The experimental results (HR@10 & NDCG@10) for Tasks 2

Evaluation Metrics. To evaluate the recommendation per-
formance of our GA-DTCDR approach and baseline ap-
proaches, we adopt the ranking-based evaluation strategy, i.e.,
leave-one-out evaluation, which has been widely used in the
literature [Xue et al., 2017; Wang et al., 2019]. For each test
user, we choose the latest interaction with a test item as the
test interaction and randomly sample 99 unobserved interac-
tions for the test user, and then rank the test item among the
100 items. Leave-one-out evaluation includes two main met-
rics, i.e., Hit Ratio (HR) and Normalized Discounted Cumu-
lative Gain (NDCG) [Wang et al., 2019]. HR@N is the recall
rate while NDCG@N measures the specific ranking quality
that assigns high scores to hits at top position ranks. Note that
we only report HR@10 and NDCG@10 results in Results 1-
3, and HR@N and NDCG@N results in Result 4.

Comparison Methods. As shown in Table 3, we com-
pare our GA-DTCDR with seven baseline models in three
groups, i.e., (1) Single-Domain Recommendation (SDR), (2)
Single-Target Cross-Domain Recommendation (CDR), and
(3) Dual-Target CDR. All of them are representative and/or
state-of-the-art approaches for each group. Also, for abla-
tion study, we also implement a simplified version of our
GA-DTCDR, i.e., GA-DTCDR Average (replacing element-
wise attention with a fixed combination strategy, i.e., average-
pooling). For clear comparison, in Table 3, we list the de-
tailed training data types, encoding strategies, embedding s-
trategies, and transfer strategies of all the nine models imple-
mented in the experiments.

4.2 Performance Comparison and Analysis
Result 1: Performance Comparison (for Q1)
To answer Q1, we compare the performance of our GA-
DTCDR with those of the seven baseline models. Note that
for the SDR baselines, we train them on each domain and then
report their performance on each domain; for the single-target

CDR baselines, we train them on both domains and then only
report their performance on the sparser domain; and for the
dual-target CDR models, we train them on both domains and
then report their performance on each domain.

Tables 4 - 6 show the experimental results in terms of
HR@10 and NDCG@10 with different embedding dimen-
sions k for Tasks 1, 2, and 3, respectively. As indicated
in Tables 4 - 6, our GA-DTCDR outperforms all the SDR,
single-target CDR, and dual-target CDR baselines by an av-
erage improvement of 8.46%. In particular, our GA-DTCDR
improves the best-performing baselines (with results marked
by * in Tables 4 - 6) by an average of 10.34% for Task 1, an
average of 10.29% for Task 2, and an average of 4.76% for
Task 3. This is because our GA-DTCDR effectively leverages
the richness and diversity of the information on both domain-
s, and intelligently and effectively combines the embeddings
of common users.

Result 2: Ablation Study (for Q2)
To answer Q2, we implement a variant of our GA-DTCDR,
i.e., GA-DTCDR Average, by replacing element-wise atten-
tion with average-pooling. Average-pooling is the combina-
tion strategy used by the existing dual-target CDR approaches
[Zhu et al., 2019], which gives the weight equally, i.e., 0.5, to
the embeddings of common users learned from dual domain-
s. As we can see from Tables 4 - 6, with the element-wise
attention, our GA-DTCDR improves GA-DTCDR Average
by an average of 6.76%. This means that element-wise atten-
tion plays a very important role in our GA-DTCDR and the
existing fixed combination strategies can hardly achieve an
effective embedding optimization on each target domain.

Result 3: Impact of Embedding Dimension k (for Q3)
To answer Q3, we analyze the effect of k on the performance
of our GA-DTCDR as depicted in Tables 4 - 6. In general, in
terms of HR@10 and NDCG@10, the recommendation ac-
curacy of our GA-DTCDR increases with k because a larger

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3006



Task Domain
SDR Baselines Single-Target CDR Baselines

NeuMF DMF CTR-RBF BPR DCDCSR TMH
HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG

Task 3
(k = 8)

DoubanMovie (Sparser) .5266 .2911 .5498 .3114 .5514 .3156 .5762 .3347 .5987 .3487
MovieLens (Richer) .7818 .5024 .8115 .5219 - - - - - -

Task 3
(k = 16)

DoubanMovie (Sparser) .5282 .2939 .5573 .3141 .5631 .3213 .5816 .3438 .6031 .3580
MovieLens (Richer) .7901 .5084 .8143 .5212 - - - - - -

Task 3
(k = 32)

DoubanMovie (Sparser) .5411 .2991 .5612 .3254 .5721 .3347 .5821 .3447 .6108 .3733*
MovieLens (Richer) .7978 .5124 .8180 .5231* - - - - - -

Task 3
(k = 64)

DoubanMovie (Sparser) .5449 .3152 .5632 .3387 .5704 .3327 .5926 .3559 .6186 .3754*
MovieLens (Richer) .7935 .5149 .8231* .5277 - - - - - -

Task 3
(k = 128)

DoubanMovie (Sparser) .5512 .3301 .5776 .3505 .5912 .3741 .6142 .3904 .6314 .3927*
MovieLens (Richer) .8042 .5205 .8319* .5344 - - - - - -

Task Domain
Dual-Target CDR Baselines Dual-Target CDR (our) Improvement

(GA-DTCDR vs.
best baselines)

DMF DTCDR
Concat DDTCDR GA-DTCDR

Average GA-DTCDR

HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG
Task 3

(k = 8)
DoubanMovie (Sparser) .6387* .3628* .6070 .3522 .6140 .3572 .6486 .4005 6.85% 10.39%

MovieLens (Richer) .8328* .5293* .8211 .5283 .8225 .5241 .8541 .5372 2.56% 1.49%
Task 3

(k = 16)
DoubanMovie (Sparser) .6391* .3606* .6100 .3518 .6266 .3710 .6514 .4018 1.92% 11.43%

MovieLens (Richer) .8312* .5260* .8263 .5170 .8280 .5277 .8547 .5381 2.83% 1.02%
Task 3

(k = 32)
DoubanMovie (Sparser) .6530* .3631 .6137 .3460 .6310 .3776 .6598 .4087 1.04% 9.48%

MovieLens (Richer) .8243* .5213 .8111 .5167 .8301 .5280 .8612 .5478 4.48% 4.72%
Task 3

(k = 64)
DoubanMovie (Sparser) .6477* .3605 .6200 .3544 .6423 .3841 .6654 .4101 2.73% 9.24%

MovieLens (Richer) .8200 .5382* .8130 .5198 .8324 .5320 .8668 .5516 5.31% 2.50%
Task 3

(k = 128)
DoubanMovie (Sparser) .6521* .3642 .6222 .3714 .6489 .3792 .6812 .4198 4.46% 6.90%

MovieLens (Richer) .8267 .5401* .8210 .5311 .8349 .5381 .8642 .5512 3.88% 2.06%

Table 6: The experimental results (HR@10 & NDCG@10) for Tasks 3

(a) DoubanBook (HR@N ) (b) DoubanBook (NDCG@N ) (c) DoubanMovie (HR@N ) (d) DoubanMovie (NDCG@N )

Figure 2: The result of Top-N recommendation for Task 1 (k = 8)

embedding can represent a user/item more accurately. How-
ever, considering the structure of the neural network layers
in Parameter Setting, the training time of our GA-DTCDR
also increases with k. This is a trade-off. Therefore, consid-
ering both aspects, k = 64 is ideal in our experiments.

Result 4: Top-N Recommendation Performance (for Q4)
To answer Q4, we compare the performance of top-N rec-
ommendation in terms of HR@N and NDCG@N where N
ranges from 1 to 10. In fact, the performance trends of the
all top-N experiments (for all the tasks with different k) are
similar. So, due to space limitation, we only report the Top-
N recommendation results of all the seven baseline models,
GA-DTCDR Average, and GA-DTCDR for Task 1 (k = 8)
in Fig. 2. In Fig. 2, on both DoubanBook (sparser) and
DoubanMovie (richer), the performance of our GA-DTCDR
is consistently better than those of all the seven baselines
and GA-DTCDR Average. On DoubanBook, considering all
the Top-N recommendations, our GA-DTCDR improves the
best-performing baselines in different experimental cases by
an average of 1.74% for HR@N , and by an average of 5.83%
for NDCG@N , while on DoubanMovie, our GA-DTCDR

improves the best-performing baselines in different experi-
mental cases by an average of 8.13% for HR@N , and by an
average of 7.55% for NDCG@N .

5 Conclusion and Future Work
In this paper, we have proposed a Graphical and Attention
framework for Dual-Target Cross-Domain Recommendation,
called GA-DTCDR, which proposes the graph embedding
technique to generate more representative user and item em-
beddings and the element-wise attention mechanism to im-
prove the recommendation accuracies on both domains si-
multaneously. Also, we have conducted extensive experi-
ments to demonstrate the superior performance of our GA-
DTCDR. In the future, we plan to extend our approach to
multi-target recommendations and conduct more comprehen-
sive experiments on new datasets to validate the impact of
data sparsity and scale of common users on performance.
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